Aging enhances liver fibrotic response in mice through hampering extracellular matrix remodeling

نویسندگان

  • Bénédicte Delire
  • Valérie Lebrun
  • Charlotte Selvais
  • Patrick Henriet
  • Amélie Bertrand
  • Yves Horsmans
  • Isabelle A. Leclercq
چکیده

Clinical data identify age as a factor for severe liver fibrosis. We evaluate whether and how aging modulates the fibrotic response in a mouse model. Liver fibrosis was induced by CCl4 injections (thrice weekly for 2 weeks) in 7 weeks- and 15 months-old mice (young and old, respectively). Livers were analyzed for fibrosis, inflammation and remodeling 48 and 96 hours after the last injection. Old mice developed more severe fibrosis compared to young ones as evaluated by sirius red morphometry. Expression of pro-fibrogenic genes was equally induced in the two age-groups but enhanced fibrolysis in young mice was demonstrated by a significantly higher Mmp13 induction and collagenase activity. While fibrosis resolution occurred in young mice within 96 hours, no significant fibrosis attenuation was observed in old mice. Although recruitment of monocytes-derived macrophages was similar in young and old livers, young macrophages had globally a remodeling phenotype while old ones, a pro-fibrogenic phenotype. Moreover, we observed a higher proportion of thick fibers and enhanced expression of enzymes involved in collagen maturation in old mice. CONCLUSION Impaired fibrolysis of a matrix less prone to remodeling associated with a pro-inflammatory phenotype of infiltrated macrophages contribute to a more severe fibrosis in old mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer

Dynamic remodeling of the extracellular matrix (ECM) is essential for development, wound healing and normal organ homeostasis. Life-threatening pathological conditions arise when ECM remodeling becomes excessive or uncontrolled. In this Perspective, we focus on how ECM remodeling contributes to fibrotic diseases and cancer, which both present challenging obstacles with respect to clinical treat...

متن کامل

Deletion of Periostin Protects Against Atherosclerosis in Mice by Altering Inflammation and Extracellular Matrix Remodeling.

OBJECTIVE Periostin is a secreted protein that can alter extracellular matrix remodeling in response to tissue injury. However, the functional role of periostin in the development of atherosclerotic plaques has yet to be described despite its observed induction in diseased vessels and presence in the serum. APPROACH AND RESULTS Hyperlipidemic, apolipoprotein E-null mice (ApoE(-/) (-)) were cr...

متن کامل

A Vitamin D Receptor/SMAD Genomic Circuit Gates Hepatic Fibrotic Response

Liver fibrosis is a reversible wound-healing response involving TGFβ1/SMAD activation of hepatic stellate cells (HSCs). It results from excessive deposition of extracellular matrix components and can lead to impairment of liver function. Here, we show that vitamin D receptor (VDR) ligands inhibit HSC activation by TGFβ1 and abrogate liver fibrosis, whereas Vdr knockout mice spontaneously develo...

متن کامل

Regulation of hepatic fibrosis and extracellular matrix genes by the th response: new insight into the role of tissue inhibitors of matrix metalloproteinases.

Hepatic fibrosis is the hallmark of Schistosoma mansoni infection and often results in portal hypertension and bleeding from esophageal varices. The fibrotic process is highly dependent on type 2 cytokines, yet their role in the regulation of extracellular matrix remodeling genes remains largely unknown. Here, we examined the expression of matrix metalloproteases (MMP) -2, -3, -9, -12, and -13 ...

متن کامل

Cellular mechanisms of tissue fibrosis. 6. Purinergic signaling and response in fibroblasts and tissue fibrosis.

Tissue fibrosis occurs as a result of the dysregulation of extracellular matrix (ECM) synthesis. Tissue fibroblasts, resident cells responsible for the synthesis and turnover of ECM, are regulated via numerous hormonal and mechanical signals. The release of intracellular nucleotides and their resultant autocrine/paracrine signaling have been shown to play key roles in the homeostatic maintenanc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016